

Projected Climate Impacts along the Central California Coast

Patrick Barnard, Li Erikson, Amy Foxgrover, Pat Limber, Andy O'Neill,

Sean Vitousek, Dan Hoover

United States Geological Survey

Pacific Coastal and Marine Science Center

Santa Cruz, CA

NASA's Goddard Space Flight Center

So how does this affect our coast....

- Warming temperatures reduce ice sheets and glaciers
 - → increase ocean volume
 - → affect vertical motion of land
- Shifts in atmospheric circulation
 - → change storm tracks, winds, and waves
- Increasing ocean temperature and changes in global wind patterns
 - → affect changes in sea surface
- → many global changes contribute to how sea level affects us locally

So how does this affect our coast....

So how big is the problem?

- Over 1 billion people are expected to live in the coastal zone by the middle of the 21st century
- 27 million presently live in CA coastal counties
- Over 600,000 people in CA at risk of flooding by the end of the century, in addition to over ~\$150 billion in property, ~6% of CA GDP
- Initial estimates of 30,000 residents and \$5.5 billion in property at risk in Santa Cruz and Monterey Counties by 2100

21st Century projections in California

State SLR Guidance for 2100

- -Likely range of 30-110 cm
- -3.05 m upper bound

<u>Waves</u>

- -No significant changes in wave height
- -More southerly wave directions

El Niño

- -More frequent extreme events
- -Doubling of winter erosion
- -Wave energy increase by 30%

Net effect

- -Today's 100-year coastal water level event is projected to occur every 1-5 years by 2050 for much of California AND every daily high tide by 2100
 - -Greatest impacts on low-lying coastal areas

Coastal Vulnerability Approaches

Static

- Passive model, hydrological connectivity
- Tides only
- '1st order screening tool'

"Bathtub" models under predict flooding hazards

static

	tide difference	2.0 m
s	ea level rise (SLR)	1.0 m

<u>MSL (datum)</u>

Coastal Vulnerability Approaches

Static

- Passive model, hydrological connectivity
- Tides only
- '1st order screening tool'

Dynamic: USGS-CoSMoS

- All physics modeled
- Forced by Global Climate Models
- Includes wind, waves, atmospheric pressure, shoreline change
- Range of SLR and storm scenarios

Coastal Storm Modeling System (CoSMoS)

- Physics-based numerical modeling system for assessing coastal hazards due to climate change
- Predicts coastal hazards for the full range of sea level rise (0-2, 5 m) and storm possibilities (up to 100 yr storm) using sophisticated global climate and ocean modeling tools
- Developing coastal vulnerability tools in collaboration with federal, state, and city governments to meet their planning and adaptation needs

CoSMoS Framework

Global Scale

Deep water wave generation and propagation using climate change influenced future winds.

Downscaled winds and atmospheric pressures

Regional Scale

Swell propagation, wave generation, storm surge, and astronomic tides.

Local Scale

High-resolution hydrodynamics: nearshore waves, wave setup and runup, storm surge, tides, overland flow, fluvial discharge.

Long-term cliff recession and shoreline change

Web-based tools for data visualization and analysis

= 40 scenarios

Shoreline change: CoSMoS-COAST

• A (hybrid) numerical model to simulate long-term shoreline evolution

Modeled processes include:

- Longshore and Cross-shore transport
- Effects of sea-level rise
- Sediment supply by natural & anthropogenic sources

CoSMoS-COAST:

Coastal

One-line

Assimilated

Simulation

Tool

Vitousek, S., Barnard, P.L., Limber, P., Erikson, L.H. and Cole, B., 2017. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. *Journal of Geophysical Research-Earth Surface*, http://dx.doi.org/10.1002/2016JF004065

Cliff retreat

Web tool - Flooding

Our Coast, Our Future tool: www.ourcoastourfuture.org

Web tool – Flood potential

Our Coast, Our Future tool: www.ourcoastourfuture.org

Cliff retreat + Shoreline Position

- Cliff: 2 coastal management scenarios
 - No erosion beyond existing structures ('hold the line'), or not
- Shoreline: 4 coastal management scenarios
 - No erosion beyond urban infrastructure ('hold the line'), or not
 - Incorporate historical rates of change in future projections (e.g. nourishment), or not

Coastal Climate Impacts by 2100

Reporting & Analytics | Analytics | Payment |

California

- 600,000+ residents
- \$150 billion in property
- 4,700 km of roads
- 350 critical facilities (e.g., schools, police stations, hospitals)

Common SLR mitigation strategies:

Retreat!

Elevate

What about groundwater?

Block

Restore+

Coastal Groundwater response to SLR

- Major issues
 - Emergence/Inundation
 - Shallower coastal groundwater
 - Saltwater intrusion, major hazard for agriculture

- Inundation may exceed overland flooding and happen much sooner
- May impact infrastructure with no warning
- Low-lying areas most vulnerable

What makes CoSMoS unique?

- Explicit, high-resolution, dynamic modeling of waves, currents, storm surge, flooding, and beach change
- Considers the future evolution of storm patterns based on the latest Global Climate Models
- Uses state-of-the-art projections of (dynamically-downscaled) winds and waves to calculate surge and seas
- Extensively tested, calibrated, and validated with local, historic data on waves, water levels and coastal change
- Flood projections are based on dynamic wave set-up, i.e., any area that is wet for at least 2 minutes during a storm scenario
- Flooding is determined by the dynamic interaction of the evolving profile and ocean conditions
 during the storm event, including dune erosion and overtopping, and also the preceding long-term
 evolution of the coast
- Coastal change projections are based on a series of strenuously tested, peer-reviewed models, and calibrated by the local behavior of the coast
- Predicts the horizontal and vertical evolution of the entire beach profile through time

Central Coast CoSMoS

- Coastal change and flooding projections complete (Monterey online soon)
- Flooding projections available with Our Coast, Our Future and HERA web tools
- Groundwater projections for all coastal CA available online

USGS CoSMoS website: https://walrus.wr.usgs.gov/coastal_processes/cosmos/index.html

Our Coast, Our Future tool: www.ourcoastourfuture.org

HERA Tool: www.usgs.gov/apps/hera

*For more information on CoSMoS, contact Patrick Barnard: pbarnard@usgs.gov

or contact Dan Hoover for groundwater projections: dhoover@usgs.gov

